PyTorch: podział zbioru, transformacje, uczenie na GPU oraz wizualizacja metryki
Dziś taki lekki misz-masz. W uczeniu maszynowym określenie struktury modelu i trening sieci neuronowej to stosunkowo niewielkie elementy dłuższego łańcucha czynności, który rozpoczyna się od załadowania zbioru danych, jego podziału na podzbiory uczący, walidacyjny oraz testowy i odpowiedniego serwowania danych do modelu. Po drodze pojawiają się również takie kwestie jak transformacja danych, uczenie na GPU …